

Применение термического анализа для технологического моделирования процессов отверждения крупных композиционных изделий.

Дунаев А.В., Макаренко И.В.

Институт новых углеродных материалов и технологий (ЗАО)

Основные направления деятельности:

•проведение исследовательских работ

•инжиниринг - разработка совместно с заказчиком нетрадиционных технических решений, поставка оборудования «под ключ», отработка технологии;

•разработка, производство и поставка углеродных тканей, эпоксидных и бисмалеимидных связующих, препрегов.

•сервис на всех стадиях поставки и обучение пользователей;

•конструкторские разработки;

•разработка нормативной документации; методическое обеспечение.

Лаборатория термического анализа

Метод	Температурный интервал		
Дифференциальная сканирующая калориметрия (ДСК)	-160 700 °C		
Дифференциальная сканирующая калориметрия (ДСК) высокого давления	-160 600 °C Давление до 150 атм		
Термогравиметрия (ТГ)	25 °C 1600 °C		
Синхронный термический анализ, сопряженный с ИК-анализом выделяющихся газов	25 °C 1600 °C		
Термомеханический анализ (ТМА)	25 °C 1000 °C		
Измерение теплопроводности методом лазерной вспышки.	25 °C 1100 °C		

При проведении комплексных исследований мы не ограничиваемся методами

термического анализа. На базе Института проводятся испытания:

- механических характеристик,
- пористости,
- реологических характеристик,
- гранулометрического состава,
- РФА и т.д.

Термический анализ реактопластов

Метод	Исследуемые характеристики
Дифференциальная сканирующая калориметрия (ДСК)	 Температурный диапазон реакции «отверждения», тепловой эффект реакции. Анализ кинетики реакции «отверждения». Доля непрореагировавшей смолы в изделии. Температура стеклования. Температурная зависимость теплоемкости.
Термогравиметрия (ТГ)	 Изменение массы при поликонденсации, испарении растворителя. Термическая стабильность. Анализ кинетики реакции разложения
Синхронный термический анализ, сопряженный с ИК-анализом выделяющихся газов	 Анализ выделяющихся при термической деструкции газов методом Фурье-ИК спектроскопии.
Термомеханический анализ (ТМА)	 Теплостойкость, температура размягчения материала. Коэффициент термического расширения. Зависимость плотности от температуры.
Измерение теплопроводности методом лазерной вспышки.	 Температуро- и теплопроводность Теплоемкость

$$R-NH_2 + CH_2-CH_- \longrightarrow R-N-CH_2-CH_- + Q$$

$$\Delta Q \sim \alpha$$

$$-d\alpha/dt = Ae^{-E/RT} f(\alpha)$$

Теплоты некоторых реакции: Epoxy-amine: от -102 до -110 кДж/моль. Epoxy-phenol: -86.7 кДж/моль Cyanate ester cyclotrimerization: от -92 до -115 кДж/моль C=C polymerization (styrene/vinyl esters): -69 kJ/моль Acrylate photo-polymerization: от -78 до -86 кДж/моль *

* - R.B. Prime, in Thermal Characterization of Polymeric Materials, 2 nd Edition, E. A. Turi (Ed.), Academic Press, San Diego, 1997, Volume 2, p. 1379.

Скорость протекания химического процесса может зависеть от:

- Скорости протекания реакции (кинетики реакции)
- Теплопереноса
- Массопереноса
- Кинетический эксперимент проводится таким образом, чтобы одна из стадий, чаще всего химическая, являлась лимитирующей*.

система как минимум из

Для моделирования протекания реакции в изделиях и реакторах необходимо последовательно провести

- 1) анализ кинетики процесса по данным термоаналитического эксперимента,
- 2) теплофизическое моделирование.

* - I.V. Arkhangel'skii, A.V. Dunaev, I.V. Makarenko, N.A. Tikhonov, S.S. Belyaev and A.V. Tarasov. Non-Isothermal Kinetic Methods. Workbook and Laboratory Manual. Max Planck Research Library for the History and Development of Knowledge. Berlin, Germany. 2013 (ISBN 978-3-8442-4693-3)

Угле- и стеклопластики могут использоваться для изготовления различных деталей самолетов, кораблей, ветрогенераторов. При изготовлении деталей важно не допустить перегрева за счет сильного экзотермического эффекта реакции, предсказать эффект коробления детали после ее снятия с оснастки.

Рычаг подвески автомобиля, изготовленный из углепластика.

Часть стойки ветрогенератора, изготовленная из углепластика.

Анализ кинетики процесса отверждения

Аппроксимация ДСК кривых одностадийной моделью

Кривые описываются удовлетворительно

Разделение ДСК пиков (Netzsch Peak Separation 3)

T-35 - Cure - Al - 5K-Ar--10-270C-06.12.12.txt

Описание ДСК кривой двумя пиками позволяет добиться лучшей аппроксимации.

Аппроксимации ДСК кривых двухстадийной моделью

NETZSCH Thermokinetics T-35

Использование двухстадийной модели позволяет добиться лучшей аппроксимации ДСК кривых моделью.

Моделирование скорости реакции по данным термоаналитического эксперимента

Температура окружающей среды 30 °C Синяя кривая — при аппроксимации ДСК кривых одностадийной моделью Тёмно-красная кривая — двухстадийной моделью.

Моделирование скорости реакции по данным термоаналитического эксперимента

Температура окружающей среды 100 °C Синяя кривая — при аппроксимации ДСК кривых одностадийной моделью Тёмно-красная кривая — двухстадийной моделью.

Моделирование протекания реакции отверждения в объеме связующего

Исходные данные:

- Свойства эпоксидной смолы: плотность 1200 кг/м³; теплоемкость 1200 Дж/кг*К; теплопроводность 0.2 Вт/м*К
- Геометрия: Цилиндрическая емкость Высота 16 см Диаметр 20 см
- Вынужденная конвекция
- Кинетическая модель одностадийная

Дополняя кинетическую модель данными о температурной зависимости теплоемкости (метод ДСК), данными о температурной зависимости теплопроводности (метод лазерной вспышки) и вводя условия теплообмена на границе тела и окружающей среды, мы можем смоделировать прохождение реакции отверждения в различных объемах связующего или изделиях различной геометрии.

Определение температуропроводности связующего при отверждении (пример Netzsch).

Держатель для измерения теплопроводности жидкостей

Зависимость температуропроводности эпоксидного связующего от времени при изотермической выдержке при различных температурах. (пример Netzsch)

Моделирование скорости реакции в объеме эпоксидного связующего

А — Зависимость температуры связующего от времени

Б — Зависимость степени конверсии связующего от времени

в геометрическом центре объема, (температура окружающей среды 25 °C)

«Время жизни» связующего в объеме около 1 часа. При использовании двухстадийной кинетической модели, рассчитанное «время жизни» на 10 минут больше.

Моделирование скорости реакции в объеме эпоксидного связующего

Температурное поле в объеме эпоксидного связующего через 1 час после начала выдержки при температуре 25 °С

- Использование двухстадийной кинетической модели, рассчитанной с помощью программного обеспечения Netzsch Thermokinetics, позволило более точно прогнозировать поведение связующего.
- Дополнение результатов кинетического анализа теплофизическими расчетами позволило смоделировать тепловые потоки, возникающие в объеме связующего при его хранении при различных температурах.
- Расчет тепловых потоков основан на кинетическом анализе данных, полученных аналитическими методиками, оперирующих с образцами малого объема и массы. Показано, что за счет низкой теплопроводности и большой величины теплового эффекта процесс отверждения в объеме связующего протекает намного быстрее, чем в образцах малого объема, используемых для кинетических расчетов.
- Проведение теплофизических расчетов позволяет выбрать условия и рассчитать длительность хранения связующего, предотвратить его самопроизвольный разогрев.

Отверждение композиционных изделий

Результаты температурного моделирования в процессе автоклавного формования для композиционного материала толщиной A — 25 мм (200 слоев).

Б — 62.5 мм (500 слоев).

(Лит. данные).

Отверждение композиционных изделий (пластина)

Исходные данные:

- Геометрия: Плоская пластина 150 х 300 х 22 мм
- Вынужденная конвекция, коэффициент теплопередачи 16 Вт/м²*К
- Кинетическая модель двухстадийная
- Содержание связующего 31 масс. %

Материал	ериал Плотность р Теплоемкость (Вт*м ⁻¹ *K ⁻¹)		оводность ⊓ ⁻¹ *К ⁻¹)	Толщина, мм		
		·	k ₁₁ , k ₂₂	k ₃₃		
Композит на основе						
углеродной ткани и	1480	1180 ± 80	3.1 ± 0.3	0.71 ± 0.07	22	
смолы МҮ 721						
Вакуумный мешок и			0.49± 0.03		0.57 ± 0.01	
жертвенная ткань,	1800	950 + 20				
усредненные	1090	930 ± 20				
характеристики						
Дюраль (Д16Т)	2770	922	130			

Аппроксимации ДСК кривых двухстадийной моделью

Температурное поле в поперечном сечении по центру пластины через

А — 50 мин. после начала нагрева,

Б — 85 мин. после начала нагрева

В ходе процесса отверждения по стандартному режиму, в пластине возникает зона с перегревом на 30 °C.

Моделирование температурных полей возникающих при отверждении.

Температуры в центре композитной пластины на основе углеродной ткани и смолы МҮ 721:

- 1 экспериментальные данные;
- 2 моделирование;
- 3 температура окружающего воздуха в печи

4 - температура окружающего воздуха в печи (модель)

Расчетная временная зависимость температуры в центре композитной пластины

1 - при оптимизированном режиме отверждения;

2 -температура окружающего воздуха в печи (модель)

Используя результаты моделирования удается подобрать режим отверждения и снизить величину перегрева до 8 °C.

Отверждение композиционных панелей (стрингер)

Исходные данные:

- Геометрия: Стрингер (размеры мм)
- Вынужденная конвекция, коэффициент теплопередачи 16 Вт/м²*К
- Кинетическая модель двухстадийная
- Содержание связующего 31 масс. %

Материал	Плотность ρ (кг*м ⁻³)	Теплоемкость С _р (Дж*кг ⁻¹ *К ⁻¹)	Теплопроводность (Вт*м ⁻¹ *К ⁻¹)		
			k ₁₁	k ₂₂	k ₃₃
Двунаправленный композиционный материал	1540	890	1.44	0.52	2.75
Однонаправленный композиционный материал	1540	890	1.25	1.25	4.85

Моделирование температурных полей возникающих в изделии (стрингер) при отверждении.

Температурное поле в поперечном сечении по центру стрингера через

А — 1,53 ч. после начала нагрева,

Б — 2,2 ч. после начала нагрева

Размеры указаны в метрах.

В ходе процесса отверждения по стандартному режиму, в пластине возникает зона с перегревом на 30 °C.

Моделирование температурных полей возникающих в изделии (стрингер) при отверждении.

Температуры в центре стрингера:

- 1 экспериментальные данные;
- 2 моделирование;
- 3 температура окружающего воздуха в печи
- 4 температура окружающего воздуха в печи (модель)

Расчетная временная зависимость температуры в центре композитной пластины при оптимизированном режиме отверждения

Используя результаты моделирования удается подобрать режим отверждения и снизить величину перегрева до 15 °C.

Моделирование температурных полей возникающих в изделии (стрингер) при отверждении.

Изменение температуры внутри стрингерной панели, при линейном нагреве до 180 °С и изотермической выдержке. На рисунке представлена ¼ часть

- Использование двухстадийной кинетической модели, рассчитанной с помощью программного обеспечения Netzsch Thermokinetics, позволило более точно прогнозировать поведение связующего при нагревании.
- Дополнение результатов кинетического анализа теплофизическими расчетами позволило смоделировать тепловые потоки, возникающие в изделии из углепластика при его отверждении.
- Показано, что за счет низкой теплопроводности и большой величины теплового эффекта процесс отверждения в изделиях из углепластика приводит к возникновению зон локального перегрева.
- Проведение теплофизических расчетов позволяет подобрать тепловой режим и снизить величину локального перегрева в изделии.

Контакты

Александр Дунаев

Заведующий лабораторией термического анализа к.х.н. (Факультет наук о материалах, МГУ имени М.В. Ломоносова), Специализация: Материаловедение, химия твердого тела, термический анализ.

Ирина Макаренко

Старший научный сотрудник к.ф-м.н. (Физический факультет, МГУ имени М.В. Ломоносова), Магистр по специальности Композиционные материалы (Химический факультет, МГУ имени М.В. Ломоносова) Специализация: Моделирование тепловых процессов, композиционные материалы, термический анализ.

119991, Россия, Москва, Ленинские горы, 1/11

тел.: +7 (495) 939-36-83

факс: +7 (495) 939-33-16

